Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Front Microbiol ; 14: 1162470, 2023.
Article in English | MEDLINE | ID: covidwho-20230780

ABSTRACT

SARS-CoV-2, the etiological cause of the COVID-19 pandemic, can cause severe illness in certain at-risk populations, including people with cystic fibrosis (pwCF). Nevertheless, several studies indicated that pwCF do not have higher risks of SARS-CoV-2 infection nor do they demonstrate worse clinical outcomes than those of the general population. Recent in vitro studies indicate cellular and molecular processes to be significant drivers in pwCF lower infection rates and milder symptoms than expected in cases of SARS-CoV-2 infection. These range from cytokine releases to biochemical alterations leading to morphological rearrangements inside the cells associated with CFTR impairment. Based on available data, the reported low incidence of SARS-CoV-2 infection among pwCF is likely a result of several variables linked to CFTR dysfunction, such as thick mucus, IL-6 reduction, altered ACE2 and TMPRSS2 processing and/or functioning, defective anions exchange, and autophagosome formation. An extensive analysis of the relation between SARS-CoV-2 infection and pwCF is essential to elucidate the mechanisms involved in this lower-than-expected infection impact and to possibly suggest potential new antiviral strategies.

2.
Front Microbiol ; 14: 1163438, 2023.
Article in English | MEDLINE | ID: covidwho-2314132

ABSTRACT

SARS-CoV-2 infection is mainly detected by multiplex real-time RT-PCR from upper respiratory specimens, which is considered the gold-standard technique for SARS-CoV-2 infection diagnosis. A nasopharyngeal (NP) swab represents the clinical sample of choice, but NP swabbing can be uncomfortable to the patients, especially for pediatric-age participants, requires trained healthcare personnel, and may generate an aerosol, increasing the intrinsic exposure risk of healthcare workers. The objective of this study was to compare paired NP and saliva samples (SS) collected from pediatric patients to evaluate whether the saliva collection procedure may be considered a valuable alternative to the classical NP swab (NPS) sampling in children. In this study, we describe a SARS-CoV-2 multiplex real-time RT-PCR protocol for SS, comparing the results with the paired NPS specimens from 256 pediatric patients (mean age 4.24 ± 4.40 years) admitted to the hospital emergency room of Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, and randomly enrolled between September 2020 and December 2020. The saliva sampling demonstrated consistent results when compared to NPS use. The SARS-CoV-2 genome was detected in 16 out of 256 (6.25%) NP samples, among which 13 (5.07%) were positive even when paired SS were analyzed. Moreover, SARS-CoV-2-negative NPS and SS were consistent, and the overall concordances between NPS and SS were detected in 253 out of 256 samples (98.83%). Our results suggest that saliva samples may be considered a valuable alternative to NPS for SARS-CoV-2 direct diagnosis with multiplex real-time RT-PCR in pediatric patients.

3.
Cells ; 12(5), 2023.
Article in English | EuropePMC | ID: covidwho-2267788

ABSTRACT

Several reports have indicated that SARS-CoV-2 infection displays unexpected mild clinical manifestations in people with cystic fibrosis (pwCF), suggesting that CFTR expression and function may be involved in the SARS-CoV-2 life cycle. To evaluate the possible association of CFTR activity with SARS-CoV-2 replication, we tested the antiviral activity of two well-known CFTR inhibitors (IOWH-032 and PPQ-102) in wild type (WT)-CFTR bronchial cells. SARS-CoV-2 replication was inhibited by IOWH-032 treatment, with an IC50 of 4.52 μM, and by PPQ-102, with an IC50 of 15.92 μM. We confirmed this antiviral effect on primary cells (MucilAirTM wt-CFTR) using 10 μM IOWH-032. According to our results, CFTR inhibition can effectively tackle SARS-CoV-2 infection, suggesting that CFTR expression and function might play an important role in SARS-CoV-2 replication, revealing new perspectives on the mechanisms governing SARS-CoV-2 infection in both normal and CF individuals, as well as leading to potential novel treatments.

4.
Cells ; 12(5)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2267789

ABSTRACT

Several reports have indicated that SARS-CoV-2 infection displays unexpected mild clinical manifestations in people with cystic fibrosis (pwCF), suggesting that CFTR expression and function may be involved in the SARS-CoV-2 life cycle. To evaluate the possible association of CFTR activity with SARS-CoV-2 replication, we tested the antiviral activity of two well-known CFTR inhibitors (IOWH-032 and PPQ-102) in wild type (WT)-CFTR bronchial cells. SARS-CoV-2 replication was inhibited by IOWH-032 treatment, with an IC50 of 4.52 µM, and by PPQ-102, with an IC50 of 15.92 µM. We confirmed this antiviral effect on primary cells (MucilAirTM wt-CFTR) using 10 µM IOWH-032. According to our results, CFTR inhibition can effectively tackle SARS-CoV-2 infection, suggesting that CFTR expression and function might play an important role in SARS-CoV-2 replication, revealing new perspectives on the mechanisms governing SARS-CoV-2 infection in both normal and CF individuals, as well as leading to potential novel treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Antiviral Agents
5.
Infect Dis Ther ; 12(4): 1073-1082, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2256591

ABSTRACT

INTRODUCTION: Detection strategies in vulnerable populations such as people experiencing homelessness (PEH) need to be explored to promptly recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks. This study investigated the diagnostic accuracy of a rapid SARS-CoV-2 Ag test in PEH during two pandemic waves compared with gold standard real-time multiplex reverse transcription polymerase chain reaction (rtRT-PCR). METHODS: All PEH ≥ 18 years requesting residence at the available shelters in Verona, Italy, across two cold-weather emergency periods (November 2020-May 2021 and December 2021-April 2022) were prospectively screened for SARS-CoV-2 infection by means of a naso-pharyingeal swab. A lateral flow immunochromatographic assay (Biocredit® COVID-19 Ag) was used as antigen-detecting rapid diagnostic test (Ag-RDT). The rtRT-PCR was performed with Allplex™ SARS-CoV-2 assay kit (Seegene). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated as measures for diagnostic accuracy. RESULTS: Overall, 503 participants were enrolled during the two intervention periods for a total of 732 paired swabs collected: 541 swabs in the first period and 191 in the second. No significant differences in demographic and infection-related characteristics were observed in tested subjects in the study periods, except for the rate of previous infection (0.8% versus 8%; p < 0.001) and vaccination (6% versus 73%; p < 0.001). The prevalence of SARS-CoV-2 in the cohort was 8% (58/732 swabs positive with rtRT-PCR). Seventeen swabs were collected from symptomatic patients (7%). Among them, the concordance between rtRT-PCR and Ag-RDT was 100%, 7 (41.2%) positive and 10 negative pairs. The overall sensitivity of Ag-RDT was 63.8% (95% CI 60.3-67.3) and specificity was 99.8% (95% CI 99.6-100). PPV and NPV were 97.5% and 96.8%, respectively. Sensitivity and specificity did not change substantially across the two periods (65.1% and 99.8% in 2020-2021 vs. 60% and 100% in 2021-2022). CONCLUSIONS: A periodic Ag-RDT-based screening approach for PEH at point of care could guide preventive measures, including prompt isolation, without referral to hospital-based laboratories for molecular test confirmation in case of positive detection even in individuals asymptomatic for COVID-19. This could help reduce the risk of outbreaks in shelter facilities.

6.
Elife ; 112022 11 22.
Article in English | MEDLINE | ID: covidwho-2217487

ABSTRACT

Background: Recent in-vitro data have shown that the activity of monoclonal antibodies (mAbs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) varies according to the variant of concern (VOC). No studies have compared the clinical efficacy of different mAbs against Omicron VOC. Methods: The MANTICO trial is a non-inferiority randomised controlled trial comparing the clinical efficacy of early treatments with bamlanivimab/etesevimab, casirivimab/imdevimab, and sotrovimab in outpatients aged 50 or older with mild-to-moderate SARS-CoV-2 infection. As the patient enrolment was interrupted for possible futility after the onset of the Omicron wave, the analysis was performed according to the SARS-CoV-2 VOC. The primary outcome was coronavirus disease 2019 (COVID-19) progression (hospitalisation, need of supplemental oxygen therapy, or death through day 14). Secondary outcomes included the time to symptom resolution, assessed using the product-limit method. Kaplan-Meier estimator and Cox proportional hazard model were used to assess the association with predictors. Log rank test was used to compare survival functions. Results: Overall, 319 patients were included. Among 141 patients infected with Delta, no COVID-19 progression was recorded, and the time to symptom resolution did not differ significantly between treatment groups (Log-rank Chi-square 0.22, p 0.90). Among 170 patients infected with Omicron (80.6% BA.1 and 19.4% BA.1.1), two COVID-19 progressions were recorded, both in the bamlanivimab/etesevimab group, and the median time to symptom resolution was 5 days shorter in the sotrovimab group compared with the bamlanivimab/etesevimab and casirivimab/imdevimab groups (HR 0.53 and HR 0.45, 95% CI 0.36-0.77 and 95% CI 0.30-0.67, p<0.01). Conclusions: Our data suggest that, among adult outpatients with mild-to-moderate SARS-CoV-2 infection due to Omicron BA.1 and BA.1.1, early treatment with sotrovimab reduces the time to recovery compared with casirivimab/imdevimab and bamlanivimab/etesevimab. In the same population, early treatment with casirivimab/imdevimab may maintain a role in preventing COVID-19 progression. The generalisability of trial results is substantially limited by the early discontinuation of the trial and firm conclusions cannot be drawn. Funding: This trial was funded by the Italian Medicines Agency (Agenzia Italiana del Farmaco, AIFA). The VOC identification was funded by the ORCHESTRA (Connecting European Cohorts to Increase Common and Effective Response to SARS-CoV-2 Pandemic) project, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 101016167. Clinical trial number: NCT05205759.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Antibodies, Monoclonal/therapeutic use , Treatment Outcome
7.
Cells ; 11(23)2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2123530

ABSTRACT

COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease.


Subject(s)
Neutrophils , RNA, Viral , SARS-CoV-2 , Toll-Like Receptor 8 , Humans , COVID-19 , Neutrophils/metabolism , SARS-CoV-2/metabolism , Toll-Like Receptor 8/genetics , RNA, Viral/genetics
8.
Viruses ; 14(11)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116153

ABSTRACT

BACKGROUND: We described a SARS-CoV-2 thrice-infected case series in health workers (HW) to evaluate patient and virus variants and lineages and collect information on variables associated with multiple infections. METHODS: A retrospective analysis of clinical and laboratory characteristics of SARS-CoV-2 thrice-infected individuals was carried out in Verona University Hospital, concurrent with the ORCHESTRA project. Variant analysis was conducted on a subset of available specimens. RESULTS: Twelve HW out of 7368 were thrice infected (0.16%). Symptomatic infections were reported in 63.6%, 54.5% and 72.7% of the first, second and third infections, respectively. Nine subjects were fully vaccinated at the time of the third infection, and five had an additional booster dose. The mean time to second infection was 349.6 days (95% CI, 138-443); the mean interval between the second and third infection was 223.5 days (95% CI, 108-530) (p = 0.032). In three cases, the second and third infections were caused by the Omicron variant, but different lineages were detected when the second vs third infections were sequenced. CONCLUSIONS: This case series confirms evidence of multiple reinfections with SARS-CoV-2, even from the same variant, in vaccinated HW. These results reinforce the need for continued infection-specific prevention measures in previously infected and reinfected HW.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , COVID-19/epidemiology , Hospitals
9.
Diagnostics (Basel) ; 12(9)2022 Sep 04.
Article in English | MEDLINE | ID: covidwho-2009981

ABSTRACT

INTRODUCTION: The anti-spike (S) IgG assay is the most widely used method to assess the immunological response to COVID-19 vaccination. Several studies showed that subjects with perivaccination infection have higher anti-S IgG titers. However, a cut-off has not yet been identified so far for distinguishing infected subjects after vaccination. This study thus evaluates the performance of the anti-S IgG assay in identifying subjects with breakthrough infections (BIs) and its potential usefulness for screening healthcare workers (HCWs). METHODS: Out of 6400 HCWs of the University Hospital of Verona vaccinated with two doses of BNT162b2, 4462 never infected before subjects who had completed primary vaccination were tested for IgG anti-S 6 to 9 months after the second dose. Of these, 59 (1.3%) had a BI. The discriminant power of IgG anti-S in detecting previous breakthrough infection was tested by constructing receiver operating characteristic (ROC) curves. RESULTS: The discriminant power for BI was rather good (area under the curve (AUC), 0.78) and increased with decreasing time elapsed between antibody titer assessment and previous SARS-CoV-2 infection. Accuracy (AUC) sensitivity increased from 0.78 (95% CI 0.70-0.85) for BI in the previous six months to 0.83 (95% CI 0.67-0.99) for those in the previous two months, and from 0.68 to 0.80, respectively. The specificity (0.86) and optimal cut-off (935 BAU/mL) remained unchanged. However, BI were rather rare (1.3%), so the positive predictive value (PPV) was low. Only 40 of the 664 HCWs with antibody titer > 935 BAU/mL had previously confirmed BI, yielding a PPV of only 6.0%. When adopting as cut-off the 90th percentile (1180 BAU/mL), PPV increased to 7.9% (35/441). CONCLUSIONS: The anti-S IgG assay displayed good sensitivity and specificity in discriminating subjects with BI, especially in recent periods. However, BIs were rare among HCWs, so that the anti-S IgG assay may have low PPV in this setting, thus limiting the usefulness of this test as a screening tool for HCWs. Further studies are needed to identify more effective markers of a previous infection in vaccinated subjects.

10.
Int J Mol Sci ; 23(17)2022 Aug 27.
Article in English | MEDLINE | ID: covidwho-2006041

ABSTRACT

SARS-CoV-2 replicates in host cell cytoplasm. People with cystic fibrosis, considered at risk of developing severe symptoms of COVID-19, instead, tend to show mild symptoms. We, thus, analyzed at the ultrastructural level the morphological effects of SARS-CoV-2 infection on wild-type (WT) and F508del (ΔF) CFTR-expressing CFBE41o- cells at early and late time points post infection. We also investigated ACE2 expression through immune-electron microscopy. At early times of infection, WT cells exhibited double-membrane vesicles, representing typical replicative structures, with granular and vesicular content, while at late time points, they contained vesicles with viral particles. ∆F cells exhibited double-membrane vesicles with an irregular shape and degenerative changes and at late time of infection, showed vesicles containing viruses lacking a regular structure and a well-organized distribution. ACE2 was expressed at the plasma membrane and present in the cytoplasm only at early times in WT, while it persisted even at late times of infection in ΔF cells. The autophagosome content also differed between the cells: in WT cells, it comprised vesicles associated with virus-containing structures, while in ΔF cells, it comprised ingested material for lysosomal digestion. Our data suggest that CFTR-modified cells infected with SARS-CoV-2 have impaired organization of normo-conformed replicative structures.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , SARS-CoV-2
11.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1969521

ABSTRACT

BACKGROUND: The research aimed to investigate the incidence of SARS-CoV-2 breakthrough infections and their determinants in a large European cohort of more than 60,000 health workers. METHODS: A multicentric retrospective cohort study, involving 12 European centers, was carried out within the ORCHESTRA project, collecting data up to 18 November 2021 on fully vaccinated health workers. The cumulative incidence of SARS-CoV-2 breakthrough infections was investigated with its association with occupational and social-demographic characteristics (age, sex, job title, previous SARS-CoV-2 infection, antibody titer levels, and time from the vaccination course completion). RESULTS: Among 64,172 health workers from 12 European health centers, 797 breakthrough infections were observed (cumulative incidence of 1.2%). The primary analysis using individual data on 8 out of 12 centers showed that age and previous infection significantly modified breakthrough infection rates. In the meta-analysis of aggregated data from all centers, previous SARS-CoV-2 infection and the standardized antibody titer were inversely related to the risk of breakthrough infection (p = 0.008 and p = 0.007, respectively). CONCLUSION: The inverse correlation of antibody titer with the risk of breakthrough infection supports the evidence that vaccination plays a primary role in infection prevention, especially in health workers. Cellular immunity, previous clinical conditions, and vaccination timing should be further investigated.

13.
Cells ; 11(8)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1792801

ABSTRACT

People with cystic fibrosis should be considered at increased risk of developing severe symptoms of COVID-19. Strikingly, a broad array of evidence shows reduced spread of SARS-CoV-2 in these subjects, suggesting a potential role for CFTR in the regulation of SARS-CoV-2 infection/replication. Here, we analyzed SARS-CoV-2 replication in wild-type and CFTR-modified human bronchial epithelial cell lines and primary cells to investigate SARS-CoV-2 infection in people with cystic fibrosis. Both immortalized and primary human bronchial epithelial cells expressing wt or F508del-CFTR along with CRISPR/Cas9 CFTR-ablated clones were infected with SARS-CoV-2 and samples were harvested before and from 24 to 72 h post-infection. CFTR function was also inhibited in wt-CFTR cells with the CFTR-specific inhibitor IOWH-032 and partially restored in F508del-CFTR cells with a combination of CFTR modulators (VX-661+VX-445). Viral load was evaluated by real-time RT-PCR in both supernatant and cell extracts, and ACE-2 expression was analyzed by both western blotting and flow cytometry. SARS-CoV-2 replication was reduced in CFTR-modified bronchial cells compared with wild-type cell lines. No major difference in ACE-2 expression was detected before infection between wild-type and CFTR-modified cells, while a higher expression in wild-type compared to CFTR-modified cells was detectable at 72 h post-infection. Furthermore, inhibition of CFTR channel function elicited significant inhibition of viral replication in cells with wt-CFTR, and correction of CFTR function in F508del-CFTR cells increased the release of SARS-CoV-2 viral particles. Our study provides evidence that CFTR expression/function is involved in the regulation of SARS-CoV-2 replication, thus providing novel insights into the role of CFTR in SARS-CoV-2 infection and the development of therapeutic strategies for COVID-19.


Subject(s)
COVID-19 , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , SARS-CoV-2
15.
Vaccines (Basel) ; 10(3)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1702373

ABSTRACT

Since December 2019, a pandemic caused by the newly identified SARS-CoV-2 spread across the entire globe, causing 364,191,494 confirmed cases of COVID-19 to date. SARS-CoV-2 is a betacoronavirus, a positive-sense, single-stranded RNA virus with four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N). The S protein plays a crucial role both in cell binding and in the induction of a strong immune response during COVID-19 infection. The clinical impact of SARS-CoV-2 and its spread led to the urgent need for vaccine development to prevent viral transmission and to reduce the morbidity and mortality associated with the disease. Multiple platforms have been involved in the rapid development of vaccine candidates, with the S protein representing a major target because it can stimulate the immune system, yielding neutralizing antibodies (NAbs), blocking viral entry into host cells, and evoking T-cell immune responses. To date, 178 SARS-CoV-2 vaccine candidates have been challenged in clinical trials, of which 33 were approved by various national regulatory agencies. In this review, we discuss the FDA- and/or EMA-authorized vaccines that are mostly based on mRNA or viral vector platforms. Furthermore, we debunk false myths about the COVID-19 vaccine as well as discuss the impact of viral variants and the possible future developments.

16.
Vaccines (Basel) ; 10(2)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1687061

ABSTRACT

BACKGROUND: The SARS-CoV-2 vaccination campaign began on 27 December 2020 in Europe, primarily involving health workers. This study aimed to assess the SARS-CoV-2 vaccination effectiveness, as assessed by reductions in incidence, symptom severity, and further infection spreading. METHODS: A retrospective cohort study was conducted on 9811 health workers operating at the Verona University Hospital, Italy, from 27 December 2020 to 3 May 2021. All health workers were offered vaccination with Comirnaty (BNT162b2, BioNTech/Pfizer, Mainz, Germany/New York, United States), and a health surveillance program was implemented with periodical swab testing. Vaccination status and clinical data were collected using an ad hoc semi-structured questionnaire and health surveillance charts. RESULTS: As of 3rd of May, 82.5% of health workers had been vaccinated against SAR-CoV-2, and 177 (1.8%) had tested positive for SARS-CoV-2. Vaccination more than halved the cumulative incidence of SARS-CoV-2 infection and reduced by two-thirds the cumulative incidence of symptomatic subjects. In detail, most unvaccinated HWs were symptomatic; 50% reported fever, 45% reported ageusia/anosmia, and nearly 20% reported dyspnea. These percentages were much lower in HWs who had been vaccinated for at least 14 days (18% for fever and anosmia, 6% for dyspnea and ageusia). Moreover, cases of vaccine breakthrough were sixfold less likely to further spread the infection than unvaccinated HWs. CONCLUSIONS: SARS-CoV-2 vaccination reduced the infection frequency among HWs, further spreading of the infection, and the presence, severity, and duration of COVID-19-related symptoms.

17.
J Infect ; 84(4): 566-572, 2022 04.
Article in English | MEDLINE | ID: covidwho-1670759

ABSTRACT

BACKGROUND: Residual symptoms can be detected for several months after COVID-19. To better understand the predictors and impact of symptom persistence we analyzed a prospective cohort of COVID-19 patients. METHODS: Patients were followed for 9 months after COVID-19 onset. Duration and predictors of persistence of symptoms, physical health and psychological distress were assessed. RESULTS: 465 patients (54% males, 51% hospitalized) were included; 37% presented with at least 4 symptoms and 42% complained of symptom lasting more than 28 days. At month 9, 20% of patients were still symptomatic, showing mainly fatigue (11%) and breathlessness (8%). Hospitalization and ICU stay vs. non-hospitalized status increased the median duration of fatigue of 8 weeks. Age > 50 years (OR 2.50), ICU stay (OR 2.35), and presentation with 4 or more symptoms (OR 2.04) were independent predictors of persistence of symptoms at month 9. A total of 18% of patients did not return to optimal pre-COVID physical health, while 19% showed psychological distress at month 9. Hospital admission (OR 2.28) and persistence of symptoms at day 28 (OR 2.21) and month 9 (OR 5.16) were independent predictors of suboptimal physical health, while female gender (OR 5.27) and persistence of symptoms at day 28 (OR 2.42) and month 9 (OR 2.48) were risk factors for psychological distress. CONCLUSIONS: Patients with advanced age, ICU stay and multiple symptoms at onset were more likely to suffer from long-term symptoms, which had a negative impact on both physical and mental wellbeing. This study contributes to identify the target populations and Long COVID consequences for planning long-term recovery interventions.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/epidemiology , Cohort Studies , Fatigue/epidemiology , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
18.
Heliyon ; 7(10): e08192, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1471985

ABSTRACT

The dramatic impact of SARS-CoV-2 infection on the worldwide public health has elicited the rapid assessment of molecular and serological diagnostic methods. Notwithstanding the diagnosis of SARS-CoV-2 infection is based on molecular biology approaches including multiplex or singleplex real time RT-PCR, there is a real need for affordable and rapid serological methods to support diagnostics, and surveillance of infection spreading. In this study, we performed a diagnostic accuracy analysis of COVID-19 IgG/IgM rapid test cassette lateral flow immunoassay test (LFIA) assay. To do so, we analyzed different cohorts of blood samples obtained from 151 SARS-CoV-2 RT-PCR assay positive patients (group 1) and 51 SARS-CoV-2 RT-PCR assay negative patients (group 2) in terms of sensitivity, specificity, PPV, NPV and likelihood ratios. In addition, we challenged LFIA with plasma from 99 patients stored during 2015-2017 period. Our results showed that this LFIA detected SARS-CoV-2 IgM and/or IgG in 103 out of 151 (68.21%) samples of group 1, whereas no IgM and/or IgG detection was displayed both in the group 2 and in pre-pandemic samples. Interestingly, IgM and/or IgG positivity was detected in 86 out of 94 (91.49%) group 1 samples collected after 10 days from symptoms onset whereas only 17 out of 57 of group 1 samples obtained before day 10 were positive to SARS-CoV-2 specific antibodies. We also compared the performance of this LFIA test with respect to other four different LFIA assays in 40 serum samples from multiplex RT-PCR positive individuals. Within the limits of the study size, the results demonstrated that COVID-19 IgG/IgM rapid test cassette LFIA assay displayed valid performance in IgM and IgG detection when compared with the other four LFIA assays. Hence, this approach might be considered as an alternative point-of-care procedure for SARS-CoV-2 serological investigation.

19.
Neurol Sci ; 43(1): 99-104, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1446168

ABSTRACT

OBJECTIVE: It is reported that recovery from COVID-19 chemosensory deficit generally occurs in a few weeks, although olfactory dysfunction may persist longer. Here, we provide a detailed follow-up clinical investigation in a very young female patient (17-year-old) with a long-lasting anosmia after a mild infection, with partial recovery 15 months after the onset. METHODS: Neuroimaging and neurophysiologic assessments as well as olfactory mucosa swabbing for microbiological and immunocytochemical analyses were performed. Olfactory and gustatory evaluations were conducted through validated tests. RESULTS: Chemosensory evaluations were consistent with anosmia associated with parosmia phenomena and gustatory impairment, the latter less persistent. Brain MRI (3.0 T) showed no microvascular injury in olfactory bulbs and brain albeit we cannot rule out slight structural abnormalities during the acute phase, and a high-density EEG was negative. Immunocytochemistry of olfactory mucosa swabs showed high expression of ACE2 in sustentacular cells and lower dot-like cytoplasmic positivity in neuronal-shaped cells. DISCUSSION: The occurrence of long-term persistent olfactory deficit in spite of the absence of structural brain and olfactory bulb involvement supports the view of a possible persistent dysfunction of both sustentacular cells and olfactory neurons. The gustatory dysfunction even if less persisting for the described features could be related to a primary gustatory system involvement. Future longitudinal studies are needed to investigate the persistence of chemosensory impairment, which could have a relevant impact on the daily life.


Subject(s)
COVID-19 , Olfaction Disorders , Adolescent , Female , Humans , Olfaction Disorders/etiology , SARS-CoV-2 , Smell , Taste Disorders
20.
Front Cell Infect Microbiol ; 11: 683409, 2021.
Article in English | MEDLINE | ID: covidwho-1370984

ABSTRACT

Objective: To investigate the presence of bacteria and fungi in bronchial aspirate (BA) samples from 43 mechanically ventilated patients with severe COVID-19 disease. Methods: Detection of SARS-CoV-2 was performed using Allplex 2019-nCoV assay kits. Isolation and characterisation of bacteria and fungi were carried out in BA specimens treated with 1X dithiothreitol 1% for 30 min at room temperature, using standard culture procedures. Results: Bacterial and/or fungal superinfection was detected in 25 out of 43 mechanically ventilated patients, generally after 7 days of hospitalisation in an intensive care unit (ICU). Microbial colonisation (colony forming units (CFU) <1000 colonies/ml) in BA samples was observed in 11 out of 43 patients, whereas only 7 patients did not show any signs of bacterial or fungal growth. Pseudomonas aeruginosa was identified in 17 patients. Interestingly, 11 out of these 17 isolates also showed carbapenem resistance. The molecular analysis demonstrated that resistance to carbapenems was primarily related to OprD mutation or deletion. Klebsiella pneumoniae was the second most isolated pathogen found in 13 samples, of which 8 were carbapenemase-producer strains. Conclusion: These data demonstrate the detection of bacterial superinfection and antimicrobial resistance in severe SARS-CoV-2-infected patients and suggest that bacteria may play an important role in COVID-19 evolution. A prospective study is needed to verify the incidence of bacterial and fungal infections and their influence on the health outcomes of COVID-19 patients.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Superinfection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Intensive Care Units , Microbial Sensitivity Tests , RNA, Viral , Respiration, Artificial , SARS-CoV-2 , Superinfection/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL